柯尼斯堡七桥问题答案(七桥问题答案)
哈喽,大家好~~~我是小编田甜,关于柯尼斯堡七桥问题答案,七桥问题答案这个很多人还不知道,那么现在让田甜带着大家一起来看看吧!
七桥问题 18世纪的欧洲,有一位伟大的数学家,全欧洲的科学家都以他为师表,都称自己是他的学生,他就是大数学家欧拉。
1736年,为欧拉在彼得堡担任教授时,他解决了一个有趣的“七桥问题”,这个趣题一直流传到现在,并相信它是拓朴学产生的萌芽。
当时与普鲁士首府哥尼斯堡有一条普雷格尔河,这条河有两个支流,还有一个河心岛,共有七座桥把两岸和岛连起来。
有一天,人们教学的时候,有人提出一个问题:“如果每座桥走一次且只走一次,又回到原来地点,应该怎么走?”当时没有一个人能找到答案。
这个问题传到住在彼得堡的欧拉耳中,当然,他不会去哥尼斯堡教学,而是把问题画成一张图:小岛、河岸画成点,桥画成连结点的线,他考虑:如果能从一个点开始用笔沿线画(就像人过桥一样)笔不准离开纸(人连续走路),同一条线不准画两遍(每个桥只经过一次),所有线都画完,最后能否回到原来的出发点?这就是“一笔画”问题。
欧拉意识到他所研究的几何问题是一种新的几何学,所研究的图形与形状和大小无关,最重要的是位置怎样用弧连结,这张图就是一个网络。
欧拉为什么能抽象出这张图呢?是他利用了几何的抽象化和理想化来观察生活,初一几何开始讲点、线、面,这些几何概念是从现实中抽象化和理想化而来,笔尖点在纸上是一个点。
在地图上一个城市是一个点,在欧拉眼中,岛和陆地抽象成点,马路可看成线,欧拉眼中,桥抽象成线,直线是笔直的生活中没有完全精确的笔直线,这是理想化了,正因为数学的这种抽象,才使数学具有“应用的广泛性”这一特点。
欧拉怎样解决的这个问题呢?若一个顶点发出的弧的条数为奇数时,称为奇顶点;发生的弧的条数为偶数时,称为偶顶点,一笔画一定有一个起点、一个终点和一定数目的通过点,分两种情况考虑: 第一种:起点和终点不是同一点,把集中在起点的所有弧画完为止,有进有出,最后一笔必须画出去,所以起点必须是奇顶点;另一方面把集中在终点的所有弧线画完为止,最后一笔必须画进来,因此,终点也必须是奇顶点;其它经过的点,有几条弧画进来,必有同样多的弧画出去,必是偶顶点。
第二种:起点和终点为同一点,又画出去,又画进来,必为偶顶点,其它顶点有进有出也都是偶顶点,因此,欧位得出以下结论: 1.全是偶顶点的网络可以一笔画。
2.能一笔画的网络的奇顶点数必为0或2。
3.如果一个网络有两个奇顶点,它就可以一笔画,但最后不能回到原来的出发点,这时,必须从一个奇顶点出发,然后回到另一个奇顶点。
用欧拉的发现去分析七桥问题,这张图上的A、B、C、D全是奇顶点,因此,不能一笔画,所以,游人一次走遍七桥是不可能的。
看完欧拉的解法,启发我们:生活中许多问题用数学方法解决,但首先要抽象化和理想化,其中点和线的抽象又是最基本的。
参考资料:数学书。
本文分享完毕,希望对大家有所帮助哦。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
奔驰GLE作为豪华SUV市场中的佼佼者,凭借其卓越的性能、豪华的内饰以及宽敞的空间,吸引了众多消费者的关注。...浏览全文>>
-
在2025年,安徽阜阳地区的帕萨特新能源汽车市场表现非常活跃。作为一款备受关注的新能源车型,帕萨特新能源凭...浏览全文>>
-
近日,滁州地区的大众汽车经销商传来好消息:备受瞩目的2025款T-ROC探歌正式上市,并且以极具竞争力的价格吸引...浏览全文>>
-
在选择一款新能源汽车时,了解其价格和配置是非常重要的一步。安徽淮南地区的长安启源E07作为2024款的新车型,...浏览全文>>
-
阜阳长安启源A05作为长安汽车旗下的全新车型,自推出以来便凭借其独特的设计风格和丰富的配置吸引了众多消费者...浏览全文>>
-
阜阳长安启源A07作为一款备受瞩目的新能源车型,以其豪华配置和亲民的价格在市场上引起了广泛关注。这款车型不...浏览全文>>
-
安徽淮南威然2024款价格及配置详解随着汽车市场的不断更新换代,上汽大众旗下的MPV车型——威然(Viloran)凭...浏览全文>>
-
QQ多米新车报价2025款,买车省钱秘籍随着汽车市场的不断发展,消费者在选购车辆时不仅关注车型的性能和配置,...浏览全文>>
-
滁州途观X 2024款最新价格及买车省钱秘籍随着汽车市场的不断发展,大众途观X作为一款兼具时尚与性能的中型SUV...浏览全文>>
-
随着汽车市场的不断发展,大众蔚揽以其优雅的设计和卓越的性能赢得了众多消费者的青睐。作为一款兼具实用性和...浏览全文>>
- Nvidia DLSS 4 有望将游戏性能提高 8 倍
- 人工智能在预测自身免疫性疾病进展方面显示出良好的前景
- 心理物理实验揭示皮肤水分感知是如何改变的
- 科茨沃尔德公司庆祝圣诞节圆满成功
- 南法纳姆学校被评为萨里郡表现最好的小学
- 约克区九所小学将削减招生人数
- 松下新款电动汽车电池为 Lucid Gravity 带来 450 英里续航里程
- 泰国旅游呈现新趋势
- 研究人员找到在细胞水平上饿死前列腺癌肿瘤的新方法
- 领先的人工智能聊天机器人在测试中表现出类似痴呆症的认知能力下降
- 庞大的 Project Zomboid build 42 终于可以玩了
- Steam Replay 回归向您展示 2024 年您玩得最多的 PC 游戏
- Jollyes 推出强化的人才支持和招聘措施
- Karen Millen 与 Simon Harrison 共同推出全新高级珠宝系列
- 奇瑞风云A8L电动轿车刷新续航里程世界纪录
- 虚拟艺术家将别克 Cascada 带回 2026 款车型
- OnePlus 宣布推出新计划解决绿线问题
- OnePlus Watch 3 将拥有更大的电池和更薄的机身
- 研究人员发现可变剪接与自身免疫性疾病遗传之间的细胞类型特异性联系
- 科学家确定脑细胞类型是排尿的主要控制者