高一必修二数学电子课本(高一数学函数值域求法)
关于高一必修二数学电子课本,高一数学函数值域求法这个问题很多朋友还不知道,今天小六来为大家解答以上的问题,现在让我们一起来看看吧!
1、函数值域(最值)求法小结一、配方法适用类型:二次函数及能通过换元法等转化为二次函数的题型.【例1】 求函数 的值域.解:为便于计算不妨: 配方得: , 利用二次函数的相关知识得 ,从而得出: .【例2】已知函数y=(ex-a)2+(e-x-a)2(a∈R,a≠0)。
2、求函数y的最小值.解析:y=(ex-a)2+(e-x-a)2=(ex+e-x)2-2a(ex+e-x)+2a2-2.令t=ex+e-x,f(t)=t2-2at+2a2-2.∵t≥2,∴f(t)=t2-2at+2a2-2=(t-a)2+a2-2的定义域为[2。
3、+∞).∵抛物线y=f(t)的对称轴为t=a,∴当a≤2且a≠0时,ymin=f(2)=2(a-1)2;当a>2时。
4、ymin=f(a)=a2-2.练习 ○1 求y = sin2x - 6sinx + 2值域.○2 当1≤x≤1000时,求 y=(lgx)2-2lgx+3值域.二、换元法【例3】 求函数 的值域.适用类型:无理函数、三角函数(用三角代换).解析:由于题中含有 不便于计算,但如果令: 注意 从而得: 变形得 即: 【例4】 设a。
5、b∈R,a2+2b2=6,则a+b的最小值是______.解:∵a。
6、b∈R,a2+2b2=6,∴令a=6cosα。
7、2b=6sinα,α∈R.∴a+b=6cosα+3sinα=3sin(α+φ).∴a+b的最小值是-3;故填-3.练习 ○3 已知 是圆 上的点,试求 的值域.三、反函数法(变量分类法)【例5】求函数 的值域.解:原式中x∈R。
8、将原式化为 由○1解出x,得 ;(也可由 直接得到 )因此函数值域是(-1,1)四、不等式法利用不等式法求解函数最值。
9、主要是指运用均值不等式及其变形公式来解决函数最值问题的一种方法.常常使用的基本不等式有以下几种:a2+b2≥2ab(a,b为实数);a+b2≥ab(a≥0,b≥0);ab≤a+b22≤a2+b22(a。
10、b为实数).【例6】设x,y,z为正实数。
11、x-2y+3z=0,则 的最小值为________.解析:因为x-2y+3z=0,所以y=x+3z2。
12、因此y2xz=x2+9z2+6xz4xz.又x,z为正实数,所以由基本不等式。
13、得y2xz≥6xz+6xz4xz=3,当且仅当x=3z时取“=”.故y2xz的最小值为3五、数形结合法【例7】适用类型:函数本身可和其几何意义相联系的函数类型. 六、判别式法把函数转化为x的二次方程F(x,y)=0。
14、通过方程有实根,判别式Δ≥0,从而求得函数的最值.判别式法多用于求形如y=ax2+bx+cdx2+ex+f(a。
15、d不同时为0)的分式函数的最值.【例9】求函数y=x2-3x+4x2+3x+4的最大值和最小值.解析:∵x2+3x+4=0的判别式Δ1=32-4×1×4=-7<0,∴x2+3x+4>0对一切x∈R均成立.∴函数的定义域为R.∴函数表达式可化为(y-1)x2+(3y+3)x+4y-4=0.当y=1时,x=0;当y≠1时。
16、由x∈R,上面的一元二次方程必须有实根,∴Δ=(3y+3)2-4(y-1)(4y-4)≥0。
17、解得17≤y≤7(y≠1).综上得ymax=7,ymin=17.七、函数单调性法【例10】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为 12。
18、则a=________.解析:∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分别为loga2a。
19、logaa=1.又∵它们的差为12,∴loga2=12,a=4.八、导数法【例11】函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是________.解析:因为f′(x)=3x2-3。
20、所以令f′(x)=0,得x=-1(舍正).又f(-3)=-17,f(-1)=3。
21、f(0)=1,比较得,f(x)的最大值为3。
22、最小值为-17.。
本文分享完毕,希望对大家有所帮助。
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
奔驰GLE作为豪华SUV市场中的佼佼者,凭借其卓越的性能、豪华的内饰以及宽敞的空间,吸引了众多消费者的关注。...浏览全文>>
-
在2025年,安徽阜阳地区的帕萨特新能源汽车市场表现非常活跃。作为一款备受关注的新能源车型,帕萨特新能源凭...浏览全文>>
-
近日,滁州地区的大众汽车经销商传来好消息:备受瞩目的2025款T-ROC探歌正式上市,并且以极具竞争力的价格吸引...浏览全文>>
-
在选择一款新能源汽车时,了解其价格和配置是非常重要的一步。安徽淮南地区的长安启源E07作为2024款的新车型,...浏览全文>>
-
阜阳长安启源A05作为长安汽车旗下的全新车型,自推出以来便凭借其独特的设计风格和丰富的配置吸引了众多消费者...浏览全文>>
-
阜阳长安启源A07作为一款备受瞩目的新能源车型,以其豪华配置和亲民的价格在市场上引起了广泛关注。这款车型不...浏览全文>>
-
安徽淮南威然2024款价格及配置详解随着汽车市场的不断更新换代,上汽大众旗下的MPV车型——威然(Viloran)凭...浏览全文>>
-
QQ多米新车报价2025款,买车省钱秘籍随着汽车市场的不断发展,消费者在选购车辆时不仅关注车型的性能和配置,...浏览全文>>
-
滁州途观X 2024款最新价格及买车省钱秘籍随着汽车市场的不断发展,大众途观X作为一款兼具时尚与性能的中型SUV...浏览全文>>
-
随着汽车市场的不断发展,大众蔚揽以其优雅的设计和卓越的性能赢得了众多消费者的青睐。作为一款兼具实用性和...浏览全文>>
- Nvidia DLSS 4 有望将游戏性能提高 8 倍
- 人工智能在预测自身免疫性疾病进展方面显示出良好的前景
- 心理物理实验揭示皮肤水分感知是如何改变的
- 科茨沃尔德公司庆祝圣诞节圆满成功
- 南法纳姆学校被评为萨里郡表现最好的小学
- 约克区九所小学将削减招生人数
- 松下新款电动汽车电池为 Lucid Gravity 带来 450 英里续航里程
- 泰国旅游呈现新趋势
- 研究人员找到在细胞水平上饿死前列腺癌肿瘤的新方法
- 领先的人工智能聊天机器人在测试中表现出类似痴呆症的认知能力下降
- 庞大的 Project Zomboid build 42 终于可以玩了
- Steam Replay 回归向您展示 2024 年您玩得最多的 PC 游戏
- Jollyes 推出强化的人才支持和招聘措施
- Karen Millen 与 Simon Harrison 共同推出全新高级珠宝系列
- 奇瑞风云A8L电动轿车刷新续航里程世界纪录
- 虚拟艺术家将别克 Cascada 带回 2026 款车型
- OnePlus 宣布推出新计划解决绿线问题
- OnePlus Watch 3 将拥有更大的电池和更薄的机身
- 研究人员发现可变剪接与自身免疫性疾病遗传之间的细胞类型特异性联系
- 科学家确定脑细胞类型是排尿的主要控制者